
f – Linear Algebra f01rcc

nag complex qr (f01rcc)

1. Purpose

nag complex qr (f01rcc) finds the QR factorization of the complex m by n matrix A, where m ≥ n.

2. Specification

#include <nag.h>
#include <nagf01.h>

void nag_complex_qr(Integer m, Integer n, Complex a[], Integer tda,
Complex theta[], NagError *fail)

3. Description

The m by n matrix A is factorized as

A = Q

(
R
0

)
when m > n

A = QR when m = n

where Q is an m by m unitary matrix and R is an n by n upper triangular matrix with real diagonal
elements.

The factorization is obtained by Householder’s method. The kth transformation matrix, Qk, which
is used to introduce zeros into the kth column of A is given in the form

Qk =
(

I 0
0 Tk

)
,

where

Tk = I − γkukuH
k

uk =
(

ζk

zk

)
,

γk is a scalar for which Re γk = 1.0, ζk is a real scalar and zk is an (m − k) element vector. γk,
ζk and zk are chosen to annihilate the elements below the triangular part of A and to make the
diagonal elements real.

The scalar γk and the vector uk are returned in the (k − 1)th element of the array theta and in the
(k − 1)th column of a, such that θk, given by

θk = (ζk, Imγk),

is in theta[k − 1] and the elements of zk are in a[k][k + 1], . . . ,a[m − 1][k − 1]. The elements of R
are returned in the upper triangular part of A.

Q is given by

Q = (QnQn−1 . . . Q1)
H .

A good background description to the QR factorization is given in Dongarra et al(1979).

4. Parameters

m
Input: m, the number of rows of A.
Constraint: m ≥ n.

[NP3275/5/pdf] 3.f01rcc.1

nag complex qr NAG C Library Manual

n
Input: n, the number of columns of A.
Constraint: n ≥ 0.
When n = 0 then an immediate return is effected.

a[m][tda]
Input: the leading m by n part of the array a must contain the matrix to be factorized.
Output: the n by n upper triangular part of a will contain the upper triangular matrix R,
with the imaginary parts of the diagonal elements set to zero, and the m by n strictly lower
triangular part of a will contain details of the factorization as described above.

tda
Input: the second dimension of the array a as declared in the function from which
nag complex qr is called.
Constraint: tda ≥ n.

theta[n]
Output: the scalar θk for the kth transformation. If Tk = I then theta[k − 1] = 0.0; if

Tk =
(

α 0
0 I

)
Reα < 0.0

then theta[k − 1] = α; otherwise theta[k − 1] contains theta [k − 1] as described in Section 3
and Re(theta[k − 1]) is always in the range (1.0,

√
2.0).

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE 2 INT ARG LT
On entry, m = 〈value〉 while n = 〈value〉. These parameters must satisfy m ≥ n.
On entry, tda = 〈value〉 while n = 〈value〉. These parameters must satisfy tda ≥ n.

NE INT ARG LT
On entry, n must not be less than 0: n = 〈value〉.

6. Further Comments

The approximate number of real floating-point operations is given by 8n2(3m − n)/3.

Following the use of this function the operations

B := QB and B := QHB

where B is an m by k matrix, can be performed by calls to nag complex apply q (f01rdc).

The operation B := QB can be obtained by the call:

f01rdc(NoTranspose, Nag_ElementsSeparate, m, n, (Complex *) a, tda,
theta, k, (Complex *) b, tdb, &fail)

and B := QHB can be obtained by the call:

f01rdc(ConjugateTranspose, Nag_ElementsSeparate, m, n, (Complex *) a,
tda, theta, k, (Complex *) b, tdb, &fail)

If B is a one-dimensional array (single column) then the parameter tdb can be replaced by 1. See
nag complex apply q (f01rdc) for further details.

The first k columns of the unitary matrix Q can either be obtained by setting B to the first k columns
of the unit matrix and using the first of the above two calls, or by calling nag complex form q
(f01rec), which overwrites the k columns of Q on the first k columns of the array a. Q is obtained
by the call:

f01rec(Nag_ElementsSeparate, m, n, k, (Complex *) a, tda, theta, &fail)

If k is larger than n, then A must have been declared to have at least k columns.

3.f01rcc.2 [NP3275/5/pdf]

f – Linear Algebra f01rcc

6.1. Accuracy

The computed factors Q and R satisfy the relation

Q

(
R
0

)
= A + E

where ‖E‖ ≤ cε‖A‖, ε being the machine precision, c is a modest function of m and n and ‖.‖
denotes the spectral (two) norm.

6.2. References

Dongarra J J, Moler C B, Bunch J R and Stewart G W (1979) LINPACK Users’ Guide SIAM,
Philadelphia.

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Clarendon Press, Oxford.

7. See Also

nag complex apply q (f01rdc)
nag complex form q (f01rec)

8. Example

To obtain the QR factorization of the 5 by 3 matrix

A =

0.5i −0.5 + 1.5i −1.0 + 1.0i
0.4 + 0.3i 0.9 + 1.3i 0.2 + 1.4i
0.4 −0.4 + 0.4i 1.8
0.3 − 0.4i 0.1 + 0.7i 0.0

− 0.3i 0.3 + 0.3i 2.4i

8.1. Program Text

/* nag_complex_qr(f01rcc) Example Program
*
* Copyright 1990 Numerical Algorithms Group.
*
* Mark 1, 1990.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagf01.h>

#define MMAX 20
#define NMAX 10
#define TDA NMAX
#define COMPLEX(A) A.re, A.im

main()
{
Integer i, j, m, n;
static NagError fail;
Complex a[MMAX][TDA], theta[NMAX];

/* Skip heading in data file */
Vscanf("%*[^\n]");
Vprintf("f01rcc Example Program Results\n");
Vscanf("%ld%ld", &m, &n);
Vprintf("\n");
if (m>MMAX || n>NMAX)

{
Vfprintf(stderr, "\n m or n is out of range.\n");
Vfprintf(stderr, "m = %ld n = %ld\n", m, n);
exit(EXIT_FAILURE);

[NP3275/5/pdf] 3.f01rcc.3

nag complex qr NAG C Library Manual

}
for (i=0; i<m; ++i)

for (j=0; j<n; ++j)
Vscanf(" (%lf , %lf) ", COMPLEX(&a[i][j]));

/* Find the QR factorization of A. */
fail.print = TRUE;
f01rcc(m, n, (Complex *)a, (Integer)TDA, theta, &fail);
if (fail.code != NE_NOERROR)

exit(EXIT_FAILURE);
Vprintf("QR factorization of A\n");
Vprintf("Vector THETA\n");
for (i=0; i<n; ++i)

Vprintf(" (%7.4f,%8.4f)%s", COMPLEX(theta[i]),
(i%3==2 || i==n-1) ? "\n" : " ");

Vprintf("\nMatrix A after factorization (upper triangular part is R)\n");
for (i=0; i<m; ++i)

{
for (j=0; j<n; ++j)
Vprintf(" (%7.4f,%8.4f)%s", COMPLEX(a[i][j]),

(j%3==2 || j==n-1) ? "\n" : " ");
}

exit(EXIT_SUCCESS);
}

8.2. Program Data

f01rcc Example Program Data

5 3

(0.0, 0.5) (-0.5, 1.5) (-1.0, 1.0)
(0.4, 0.3) (0.9, 1.3) (0.2, 1.4)
(0.4, 0.0) (-0.4, 0.4) (1.8, 0.0)
(0.3, -0.4) (0.1, 0.7) (0.0, 0.0)
(0.0, -0.3) (0.3, 0.3) (0.0, 2.4)

8.3. Program Results

f01rcc Example Program Results

QR factorization of A
Vector THETA
(1.0000, 0.5000) (1.0954, -0.3333) (1.2649, 0.0000)

Matrix A after factorization (upper triangular part is R)
(1.0000, 0.0000) (1.0000, 1.0000) (1.0000, 1.0000)
(-0.2000, -0.4000) (-2.0000, 0.0000) (-1.0000, -1.0000)
(-0.3200, -0.1600) (-0.3505, 0.2629) (-3.0000, 0.0000)
(-0.4000, 0.2000) (0.0000, 0.5477) (0.0000, 0.0000)
(-0.1200, 0.2400) (0.1972, 0.2629) (0.0000, 0.6325)

3.f01rcc.4 [NP3275/5/pdf]

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

